Protein kinase inhibitors selectively block phorbol ester- or forskolin-induced changes in excitability of Aplysia neurons.
نویسندگان
چکیده
Exposure of the bag cell neurons of Aplysia to activators of protein kinase C, such as phorbol esters, enhances electrically evoked action potentials by increasing the voltage-dependent calcium current. We have hypothesized that this effect is mediated by the activation of protein kinase C (PKC). An important prediction of this hypothesis is that inhibitors of PKC should inhibit these phorbol ester-induced changes in bag cell neuronal excitability. We have now found that treatment of bag cell neurons with the protein kinase inhibitor 1-[5-isoquinolinesulfonyl]-2-methyl piperazine (H-7) inhibits the phorbol ester-induced enhancement of bag cell action potentials and prevents the enhancement of calcium current by phorbol esters. The height and width of electrically evoked action potentials in bag cell neurons can also be enhanced by cAMP analogs or agents that elevate cAMP. These agents do not influence the major voltage-dependent calcium current in the bag cell neurons but may act by modulating potassium currents and other voltage-dependent currents. We have found that microinjection of a protein inhibitor of cAMP-PK (PKA-I) into isolated bag cell neurons prevents and reverses the effect of the adenylate cyclase activator forskolin on action potentials of these cells. In contrast, H-7 does not inhibit the effects of forskolin on a variety of responses in these cells, including its effects on action potentials, granule movement, and 32P incorporation into phosphoproteins. This suggests that H-7 is selective for PKC relative to cAMP-PK in intact bag cell neurons.
منابع مشابه
Long-term changes in excitability induced by protein kinase C activation in Aplysia sensory neurons.
Protein kinases A (PKA) and C (PKC) play a central role as intracellular transducers during simple forms of learning in Aplysia. These two proteins seem to cooperate in mediating the different forms of plasticity underlying behavioral modifications of defensive reflexes in a state- and time-dependent manner. Although short- and long-term changes in the synaptic efficacy of the connections betwe...
متن کاملModulation of excitability in Aplysia tail sensory neurons by tyrosine kinases.
Tyrosine kinases have recently been shown to modulate synaptic plasticity and ion channel function. We show here that tyrosine kinases can also modulate both the baseline excitability state of Aplysia tail sensory neurons (SNs) as well as the excitability induced by the neuromodulator serotonin (5HT). First, we examined the effects of increasing and decreasing tyrosine kinase activity in the SN...
متن کاملInformation storage in the nervous system of Aplysia: specific proteins affected by serotonin and cAMP.
To identify proteins that may be involved in the induction of long-term changes in the nervous system, we investigated whether specific proteins in pleural sensory neurons of Aplysia were affected by procedures that mimic those used to produce long-term sensitization. Using two-dimensional PAGE, we found that exposure to serotonin (5-hydroxytryptamine, 5-HT) for 2 or 3 hr appeared to increase i...
متن کاملAssociation/dissociation of a channel-kinase complex underlies state-dependent modulation.
Although ion channels are regulated by protein kinases, it has yet to be established whether the behavioral state of an animal may dictate whether or not modulation by a kinase can occur. Here, we describe behaviorally relevant changes in the ability of a nonselective cation channel from Aplysia bag cell neurons to be regulated by protein kinase C (PKC). This channel drives a prolonged afterdis...
متن کاملModulation of a cAMP/protein kinase A cascade by protein kinase C in sensory neurons of Aplysia.
The synaptic connections between the sensory neurons of Aplysia and their follower neurons have been used as a model system for examining the cellular mechanisms contributing to neuronal and synaptic plasticity. Recent studies suggest that at least two protein kinases, protein kinase A (PKA) and protein kinase C (PKC), contribute to serotonin (5-HT)-induced short-term facilitation. The interact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 9 2 شماره
صفحات -
تاریخ انتشار 1989